Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 172: 113067, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37689856

RESUMEN

Under appropriate experimental conditions, some glycoside hydrolases can catalyze transglycosylation reactions; a hypothesis associated with this is that the glycosidic linkages formed will be preferentially hydrolyzed under optimal conditions. Therefore, the hydrolytic and transglycosylation activities of isolated membranes from differentiated Caco-2 cells on sucrose, maltose and isomaltulose were evaluated. After the enzymatic reactions, the di- and trisaccharides obtained were identified by gas chromatography coupled to a mass spectrometer. Differentiated Caco-2 cell membranes exerted hydrolytic and transglycosylation activities towards the studied disaccharides. The obtained di- and trisaccharides were detected for the first time using human cell models. Due to the absence of maltase-glucoamylase complex (MGAM) in Caco-2 cells, and the known hydrolytic activity of sucrase-isomaltase (SI) towards sucrose, maltose and isomaltulose, it is plausible that the glycosidic linkages obtained after the transglycosylation reaction, mainly α-glucosyl-fructoses and α-glucosyl-glucoses, were carried out by SI complex. This approach can be used as a model to explain carbohydrate digestibility in the small intestine and as a tool to design new oligosaccharides with low intestinal digestibility.


Asunto(s)
Disacaridasas , Maltosa , Humanos , Células CACO-2 , Hexosas , Glicósidos , Sacarosa
2.
Materials (Basel) ; 15(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36431453

RESUMEN

Zeolites are materials of undeniable importance for science and technology. Since the properties of zeolites can be tuned after the inclusion of additional chemical species into the zeolitic framework, it is necessary to study the nature of zeolites after modification with transition metals to understand the new properties that were obtained, and with this information, novel applications can be proposed. This paper reports a solvent-free approach for the rapid synthesis of zeolites modified with iron and/or iron oxide particles. The samples were characterized, and their electrical and magnetic properties were investigated.

3.
Polymers (Basel) ; 15(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36616448

RESUMEN

COVID-19 has drawn worldwide attention to the need for personal protective equipment. Face masks can be transformed from passive filters into active protection. For this purpose, it is sufficient to apply materials with oligodynamic effect to the fabric of the masks, which makes it possible to destroy infectious agents that have fallen on the mask with aerosol droplets from the air stream. Zeolites themselves are not oligodynamic materials, but can serve as carriers for nanoparticles of metals and/or compounds of silver, zinc, copper, and other materials with biocidal properties. Such a method, when the particles are immobilized on the surface of the substrate, will increase the lifetime of the active oligodynamic material. In this work, we present the functionalization of textile materials with zeolites to obtain active personal protective equipment with an extended service life. This is done with the aim to extend the synthesis of zeolitic materials to polymeric fabrics beyond cotton. The samples were characterized using XRD, SEM, and UV-Vis spectroscopy. Data of physicochemical studies of the obtained hybrid materials (fabrics with crystals grown on fibers) will be presented, with a focus on the effect of fabrics in the growth process of zeolites.

4.
Molecules ; 25(20)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066351

RESUMEN

Mesostructured pillared zeolite materials in the form of lamellar phases with a crystal structure of mordenite (MOR) and ZSM-5 (MFI) were grown using CTAB as an agent that creates mesopores, in a one-pot synthesis; then into the CTAB layers separating the 2D zeolite plates were introduced by diffusion the TEOS molecules which were further hydrolyzed, and finally the material was annealed to remove the organic phase, leaving the 2D zeolite plates separated by pillars of silicon dioxide. To monitor the successive structural changes and the state of the atoms of the zeolite framework and organic compounds at all the steps of the synthesis of pillared MOR and MFI zeolites, the nuclear magnetic resonance method (NMR) with magic angle spinning (MAS) was applied. The 27Al and 29Si MAS NMR spectra confirm the regularity of the zeolite frameworks of the as synthetized materials. Analysis of the 1H and 13C MAS NMR spectra and an experiment with variable contact time evidence a strong interaction between the charged "heads" -[N(CH3)3]+ of CTAB and the zeolite framework at the place of [AlO4]- location. According to 27Al and 29Si MAS NMR the evacuation of organic cations leads to a partial but not critical collapse of the local zeolite structure.


Asunto(s)
Silicatos de Aluminio/química , Resonancia Magnética Nuclear Biomolecular/métodos , Zeolitas/química , Aluminio , Rastreo Diferencial de Calorimetría , Cetrimonio/química , Cristalización , Isótopos , Microscopía Electrónica de Rastreo , Silicio , Espectrometría por Rayos X , Termogravimetría , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...